黑色素瘤是最致命的一种皮肤癌,大多数死于黑色素瘤的患者最初被诊断为早期黑色素瘤,后来复发,通常直到扩散或转移才被发现。
马萨诸塞州总医院(Massachusetts General Hospital)的研究人员领导的一个团队最近开发了一种基于人工智能的方法,可以预测哪些患者最有可能复发,从而有望从积极治疗中受益。该方法在npj精密肿瘤学杂志上发表的一项研究中得到了验证。
大多数早期黑色素瘤患者通过手术去除癌细胞,但更晚期的癌症患者通常接受免疫检查点抑制剂,这种药物有效地加强了对肿瘤细胞的免疫反应,但也有明显的副作用。
MGH皮肤病学研究员、资深作者Yevgeniy R. Semenov说:“迫切需要开发预测工具来帮助选择高风险患者,对这些患者来说,免疫检查点抑制剂的好处可以证明这种治疗类别观察到的高发病率和潜在致命的免疫不良事件。”
“对黑色素瘤复发的可靠预测可以实现更精确的免疫治疗选择,减少转移性疾病的进展,并提高黑色素瘤的存活率,同时最大限度地减少治疗毒性。”
为了帮助实现这一目标,Semenov和他的同事评估了基于机器学习(人工智能的一个分支)的算法的有效性,该算法使用来自患者电子健康记录的数据来预测黑色素瘤复发。
具体来说,该团队收集了1720个早期黑色素瘤——1172个来自麻省总医院布里格姆医疗保健系统,548个来自达纳-法伯癌症研究所——并从电子健康记录中提取了这些癌症的36个临床和病理特征,用机器学习算法预测患者的复发风险。在不同的MGB和DFCI患者组中开发并验证了算法,并将肿瘤厚度和癌细胞分裂率确定为最具预测性的特征。
Semenov说:“我们的综合风险预测平台使用新颖的机器学习方法来确定早期黑色素瘤复发的风险,达到了很高的分类和事件预测时间的准确性。”“我们的研究结果表明,机器学习算法可以从临床病理特征中提取预测信号,用于早期黑色素瘤复发预测,这将能够识别可能受益于辅助免疫治疗的患者。”
其他麻省总医院的合著者包括Ahmad Rajeh、Michael R. Collier、Min Seok Choi、Munachimso Amadife、Kimberly Tang、Zhang Shijia、Jordan Phillips、Nora A. Alexander、华伊宁、陈文欣、Diane、Ho、Stacey Duey和Genevieve M. Boland。
这项工作得到了黑色素瘤研究联盟、美国国立卫生研究院、国防部和皮肤病学基金会的支持。
注:本文由院校官方新闻直译,仅供参考,不代表指南者留学态度观点。